
Faculty of Industrial Engineering,
Mechanical Engineering and

Computer Science
University of Iceland

2013

Faculty of Industrial Engineering,
Mechanical Engineering and

Computer Science
University of Iceland

2013

Downsampling Time Series for
Visual Representation

Sveinn Steinarsson

DOWNSAMPLING TIME SERIES FOR VISUAL
REPRESENTATION

Sveinn Steinarsson

30 ECTS thesis submitted in partial fulfillment of a
Magister Scientiarum degree in Computer Science

Advisors
Jóhann Pétur Malmquist

Kristján Jónasson

Faculty Representative
Bjarni Júlíusson

Faculty of Industrial Engineering,
Mechanical Engineering and

Computer Science
School of Engineering and Natural Sciences

University of Iceland
Reykjavik, June 2013

Downsampling Time Series for Visual Representation
30 ECTS thesis submitted in partial fulfillment of a M.Sc. degree in Computer Science

Copyright c© 2013 Sveinn Steinarsson
All rights reserved

Faculty of Industrial Engineering,
Mechanical Engineering and
Computer Science
School of Engineering and Natural Sciences
University of Iceland
Hjarðarhagi 2 – 6
107, Reykjavik, Reykjavik
Iceland

Telephone: 525 4000

Bibliographic information:
Sveinn Steinarsson, 2013, Downsampling Time Series for Visual Representation,
M.Sc. thesis, Faculty of Industrial Engineering,
Mechanical Engineering and
Computer Science, University of Iceland.

Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík
Reykjavik, Iceland, June 2013

Dedication

To my daughter Svanfríður

Abstract

As human beings, we often wish to visualize certain information in order to make
better sense of it. This can be a somewhat challenging enterprise for large amounts of
data and might require downsampling the data, retaining only the important visual
characteristics. The focus of this thesis is to explore methods for downsampling data
which can be visualized in the form of a line chart, for example, time series. Several
algorithms are put forth in the thesis and their features are discussed. Also, an online
survey was conducted where participants were asked to compare downsampled line
charts against a non-downsampled chart. Some of the algorithms are based on
a well-known technique in cartography which involves forming triangles between
adjacent data points and using the area of the triangles to determine the perceptual
importance of the individual points. According to the survey, algorithms based on
a triangle area approach consistently proved to be effective, and one in particular
when efficiency is also taken into account.

Útdráttur

Oft þarf að setja upplýsingar fram á sjónrænan máta til að gera sér betur grein fyrir
þeim. Það getur verið erfiðleikum háð ef um er að ræða mikið magn upplýsinga og
þá gæti þurft að grisja gögnin og halda aðeins þeim hluta sem felur í sér mikilvæg
sjónræn einkenni. Markmið þessa verkefnis er að kanna aðferðir til að grisja gögn sem
setja skal upp á sjónrænan máta sem línurit til dæmis tímaraðir. Í ritgerðinni eru
nokkur reiknirit sett fram og einkennum þeirra lýst. Einnig var framkvæmd vefkönn-
un þar sem þátttakendur voru beðnir um að bera saman grisjuð línurit við ógrisjað
línurit. Sum reikniritanna eru byggð á þekktri aðferð úr kortagerð sem snýst um
að mynda þríhyrninga milli nálægra gagnapunkta og nota flatamál þríhyrninganna
til að meta sjónrænt mikilvægi einstakra punkta. Samkvæmt könnunni skiluðu þau
reiknirit sem byggðu á þríhyrningsaðferðinni ávallt góðri niðurstöðu, sérstaklega eitt
reikniritanna ef einnig er tekið mið af skilvirkni.

vii

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

Glossary and List of Abbreviations xix

Acknowledgments xxi

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives of the Current Study . 2
1.3. Thesis Overview . 4

2. Intuitive Downsampling Algorithms 5
2.1. Mode-Median-Bucket . 5
2.2. Min-Std-Error-Bucket . 8
2.3. Longest-Line-Bucket . 12

3. Cartographic Generalization 15
3.1. Polyline Simplification Techniques . 15
3.2. Adapting the Visvalingam–Whyatt Algorithm 16

4. Largest Triangle Algorithms 19
4.1. Largest-Triangle-One-Bucket . 19
4.2. Largest-Triangle-Three-Buckets . 21
4.3. Largest-Triangle-Dynamic . 25

5. Survey 31
5.1. Questions . 32
5.2. Participants . 35
5.3. Survey Results . 36

6. Overview Comparison of the Downsampling Algorithms 45
6.1. Comparison Matrix . 47

ix

Contents

7. Conclusion, Discussion and Future Work 49

Bibliography 51

A. Test Suite 53

B. DataMarket 57

C. Downsampling Examples 59

D. Downsampling Plugin for Flot 63

x

List of Figures

1.1. Time series containing 10,000 data points 1

1.2. A line chart before and after downsampling with an every nth-point
algorithm . 2

2.1. Data downsampled with the Mode-Median-Bucket algorithm (black)
skips most local peaks and troughs of the original data (gray) 7

2.2. The left gray point is selected for the bucket (between the dashed
lines) since the gray points have the same y-value 7

2.3. Data with 8 points split up into 5 buckets 8

2.4. Vertical distance between lines and other data points the lines pass by 9

2.5. A directed acyclic graph representation of figure 2.3 10

2.6. Downsampled data (black) and original data (gray) 11

2.7. Two line charts segments showing a spike included and excluded . . . 12

2.8. Downsampled data (black) and original data (gray) 14

3.1. Points on a polyline and their effective area 16

3.2. Downsampled line chart using a slightly modified Visvalingam–Whyatt
algorithm (black) skips over many data points in the original data (gray) 17

4.1. The gray points have the largest effective area 19

4.2. Downsampled line chart (black) with the Largest-Triangle-One-Bucket
algorithm . 20

xi

LIST OF FIGURES

4.3. Largest-Triangle-One-Bucket compared to the Longest-Line-Bucket . 21

4.4. Largest triangle formed across three buckets and point C being a
temporary point in the last bucket 22

4.5. Line charts comparing the average and the brute-force method in
calculating the largest triangle . 23

4.6. Exchange rate of the Icelandic Krona shooting up during the financial
crisis of 2008 (contains 3,987 data points) 24

4.7. Downsampling data with distant outliers 25

4.8. A regression line (gray) through a bucket 26

4.9. A line chart divided into six equal parts 27

4.10. A line chart divided into six parts . 27

4.11. Line chart downsampled using Largest-Triangle-Dynamic down to 100
points, showing bucket division as vertical bands 28

4.12. Line chart downsampled with Largest-Triangle-Three-Buckets down
to 100 points . 29

5.1. Screenshot of the first survey question (top only) 32

5.2. All the survey questions used one of three line charts shown in the
subfigures . 33

5.3. Survey results for the Icelandic Krona exchange rate down to 500
data points using the intuitive algorithms 36

5.4. Survey results for the randomly generated line chart down to 700 data
points using the Largest-Triangle algorithms 37

5.5. Survey results for the Icelandic Krona exchange rate down to 700
data points using the Largest-Triangle algorithms 38

5.6. Survey results for the randomly generated line chart down to 500 data
points using the Largest-Triangle algorithms 39

xii

LIST OF FIGURES

5.7. Survey results for the Icelandic Krona exchange rate down to 500
data points using the Largest-Triangle algorithms 39

5.8. Survey results for the randomly generated line chart down to 300 data
points using the Largest-Triangle algorithms 40

5.9. Survey results for the Icelandic Krona exchange rate down to 300
data points using the Largest-Triangle algorithms 41

5.10. Survey results for the Melbourne temperature down to 500 data points
using the Largest-Triangle algorithms 42

5.11. Survey results for the Icelandic Krona exchange rate down to 200
data points using all the algorithms 43

A.1. Screenshot of the test suite . 53

A.2. Data from the U.S. Geological Survey and Eurostat 54

A.3. Two random generated line charts . 55

A.4. Line chart from formula y = sin(x) and x = [x*0.1 for x in range(400)] 55

C.1. The Icelandic Krona exchange rate 3,987 data points down to 300
with different algorithms . 60

C.2. The Melbourne temperature (over 10 years) 3,650 data points down
to 500 with different algorithms . 61

C.3. Random generated line chart 7,000 data points down to 700 with
different algorithms . 62

xiii

List of Tables

5.1. Order and setup of the survey questions 35

5.2. Age distribution of participants in the survey 35

5.3. Education level of participants in the survey 36

6.1. Comparison of the downsampling algorithms 47

C.1. List of downsampling examples . 59

xv

List of Algorithms

2.1. Mode-Median-Bucket . 6
2.2. Min-Std-Error-Bucket . 11
2.3. Longest-Line-Bucket . 13

4.1. Largest-Triangle-One-Bucket . 20
4.2. Largest-Triangle-Three-Buckets . 23
4.3. Largest-Triangle-Dynamic . 29

xvii

Glossary and List of Abbreviations

API Application Programming Interface
Bucket An ordered set containing a subinterval of data points
DAG Directed Acyclic Graph
LLB Longest-Line-Bucket algorithm
LTD Largest-Triangle-Dynamic algorithm
LTOB Largest-Triangle-One-Bucket algorithm
LTTB Largest-Triangle-Three-Buckets algorithm
MMB Mode-Median-Bucket algorithm
MSEB Min-Std-Error-Bucket algorithm
SEE Standard Error of the Estimate
SSE Sum of Squared Errors
Threshold The number of data points to be returned when downsampling is

applied

xix

Acknowledgments

First, I would like to thank my advisors, Professor Jóhann Pétur Malmquist and
Professor Kristján Jónasson. Their guidance provided me with invaluable help dur-
ing the course of this project. I also want to acknowledge Bjarni Júlíusson efforts as
faculty representative.

Next, I need to thank DataMarket for suggesting this thesis topic and all their em-
ployees for their enthusiasm. Special thanks go to DataMarket’s lead programmer,
Borgar Þorsteinsson, for all his advice and patience.

Finally, I thank my parents for their tremendous support.

xxi

1. Introduction

1.1. Motivation

One of the most common type of data visualization used is a line chart. Such
a chart is normally derived from discrete two-dimensional data in which for every
independent value on the x-axis there is one dependent value on the y-axis. If values
on the x-axis are evenly spaced over time, the data is most often referred to as a
time series.

Generally, producing a line chart on a computer is a relatively easy thing to do.
However, if the data contains a vast number of data points, the resulting line chart
may appear quite squashed.

Figure 1.1: Time series containing 10,000 data points

Such an effect is the result of rendering data containing many more points than
the number of pixels for the given canvas width. A line chart entailing a data point
distribution high in density proffers limited information to an observer of that chart.
Short term directions and fluctuations can be hard to determine due to the fact that
multiple values of the dependent variable are drawn on the same vertical pixel line.
For example, if 10,000 data points are drawn on a relatively small canvas, as seen
in figure 1.1, we end up with this type of squashed line chart.

1

1. Introduction

Some necessary steps must be taken to avoid the problems discussed before, when
visualizing a large amount of data as a line chart, if it is preferred or required to
view the chart in its entirety. With some data it might be acceptable to average
out some data points, creating new data points to represent a group of points in
the original data. To achieve this, numerous well-known methods can be applied,
e.g., regression analysis. However, the focus of this thesis is mainly to explore
downsampling algorithms which return a subset of data points existing in the original
data. In that regard, sometimes it might suffice to use only every other data point
or maybe every tenth data point, depending on the data and canvas size. Still,
such a method is only suitable if the data is “smooth” in nature and has little or
no fluctuations. If the data is somewhat irregular, then using only every nth data
point to draw the line chart will almost guarantee that many interesting peaks and
troughs will not be included in the chart, as seen in figure 1.2. Clearly a more
intelligent approach is needed and that is the motivation for this thesis.

(a) Original line chart (b) Downsampled line chart

Figure 1.2: A line chart before and after downsampling with an every nth-point
algorithm

Initially the company DataMarket, inc.1 suggested that I could make the problem
of downsampling data for better visualization the main topic of my masters thesis.
The company has experienced this problem first hand in a very practical manner
since it offers data visualization solutions to their clients.

1.2. Objectives of the Current Study

Before stating the objectives it it is important to emphasize that the downsampled
data is only intended to visually represent the original data for human observation
and not data analysis, statistical or otherwise. Many techniques for such analysis
have studied in the field of data mining and data reduction [1]. When processing
information for visual representation, it is only important to retain the data which
offers the most information and is actually perceived by people, the rest can be
discarded.

1See appendix B for more information on DataMarket.

2

1.2. Objectives of the Current Study

The primary objective is to design and implement a few algorithms that can effec-
tively downsample any data which can be directly drawn as line chart, with special
emphasis on time series. The downsampling algorithms then need to be compared
in regard to several factors. Those factors include but are not limited to efficiency,
complexity and correctness.

The second objective is to be able to say something about the human perception
on downsampled data drawn as a line chart. That includes conducting a simple
comparative survey using different downsampling algorithms. Of course, the results
of such a survey will not be entirely conclusive but might still offer some insights on
a few questions like:

• Is there a definite underlying consensus among people what is considered to
be a good representation of the original data and if so, which of the proposed
algorithms are considered to produce the best results in that regard?

• In the case of extreme downsampling2, which of the proposed algorithms does
the best job in retaining the visual characteristics of the line chart?

Using a known algorithm to downsample large data sets for visualization can have
some benefits for people, in particular researchers, who need to draw a line chart
derived from large data onto a small area. It would certainly be a questionable
scientific practice if everyone would just downsample their data as they saw fit in
order to make their charts “look better”. Using a good deterministic algorithm
to downsample data for visualization, if downsampling is required, must surely be
prefered because then it can be described or cited.

One other fundamental problem has to do with visualizing large data in real time,
which has become a quite common practice. For example, a number of websites are
now offering users to view interactive line charts. That kind of interactive solutions
require the user’s computer to receive the raw data and render it. If the data is
very extensive it might take some time to download and it might also take some
time for the user’s computer to draw the line chart. If the data were reasonably
downsampled before being sent to the user or before being drawn, the waiting time
for the user would decrease without any observable effects on the line chart. That
would result in a better overall user experience, saving both bandwidth and time.

2Extreme downsampling might use less than 5% of the original points.

3

1. Introduction

1.3. Thesis Overview

The remaining parts of this thesis are organized as follows: In chapter 2 three
downsampling algorithms are put forth and analyzed, the original downsampling
algorithm used by DataMarket and two other algorithms designed as a part of this
project. Chapter 3 gives a brief introduction to cartographic generalization and
polyline simplification. The chapter also describes the idea of using similar tech-
niques as in cartography to downsample line charts. The following chapter describes
three additional algorithms to downsample line charts. All those algorithms make
use of a technique commonly used to simplify polylines in maps described in the pre-
ceding chapter and one of them was chosen by DataMarket to replace their method
for downsampling line charts. Chapter 5 describes an online survey which was con-
ducted as a part of this study. Next is chapter which lists comparison factors and
shows a comparison matrix with all the algorithms in the thesis. The seventh and
last chapter contains conclusions and future work.

The thesis also includes four appendices: Appendix A contains information about
the test suite of programs and line chart data, which was made to test various down-
sampling algorithms and used in the survey. Appendix B has some more information
on DataMarket, the company which suggested the topic of the thesis. Additional
figures of downsampled line charts are put forth in a structured manner in appendix
C and the last appendix has the initial source code for the downsampling algorithm
which was published under a free software license.

4

2. Intuitive Downsampling
Algorithms

In this chapter, three downsampling algorithms are described. The design of these
algorithms is perhaps motivated more on intuition than on concrete theoretical foun-
dations, hence the title of the chapter. Furthermore, it is worth mentioning that the
algorithms described are only intended to explore certain concepts and are maybe
not suitable for practical usage.

2.1. Mode-Median-Bucket

The original downsampling algorithm designed by DataMarket employees is referred
to as Mode-Median-Bucket in the current study. This undocumented algorithm was
developed from experiments and visual observations in order to evaluate its effec-
tiveness for various data. It was implemented at the early start of the company when
large data sets were probably not so common and the method for downsampling was
perhaps adequate in most cases observed. Now it has become more obvious that the
current method needs to be analyzed further and most likely replaced.

The algorithm uses primarily two methods, mode and median, to govern which
data points are returned, thus the name Mode-Median-Bucket. The bucket part in
the algorithm name refers to the data being split up into buckets, each containing
approximately equal number of data points. The algorithm then finds one data
point within each bucket as follows. If there is a single y-value which has the highest
frequency (the mode) then the leftmost corresponding data point is selected. If no
such data point exists a point corrosponding to the median of the y-values is selected.
An exception to these rules is when a global peak or a global trough is found within
the bucket. This is to ensure that those points are included in the downsampled
data.

5

2. Intuitive Downsampling Algorithms

Algorithm 2.1 Mode-Median-Bucket
Require: data . The original data
Require: threshold . Number of data points to be returned
1: Split the data into the same number of buckets as the threshold
2: for each bucket do . Select a data point to represent the bucket
3: if a global peak or trough is found in the bucket then use that data point
4: if there is a single most frequent y-value then
5: if there is only one corresponding point then
6: Use that
7: else
8: Use the one with the lowest x-value
9: else
10: if the number of data points in the bucket is odd then
11: Use the middle corresponding data point
12: else . Even number of data points in the bucket
13: Use the left data point in the the median y-value pair
14: end for
15: Finally make sure that the first and last data points in the original data are also

the first and last data points in the downsampled data.

Selecting the data point from each bucket which has the highest mode or is the me-
dian for the y-values might be a good intuitive way to represent the data statistically.
It is at least a very simple way and easy to understand.

One of the most obvious issues with this algorithm is that it is very likely to exclude
local peaks and troughs within each bucket (see figure 2.1). The reason for this is
because it does not take into account what the y-value actual is, only how frequent
it is within each bucket. The only exception is when the global peak or trough occur
in the bucket.

6

2.1. Mode-Median-Bucket

Figure 2.1: Data downsampled with the Mode-Median-Bucket algorithm (black) skips
most local peaks and troughs of the original data (gray)

Often all the y-values have the same frequency because the values within a bucket
are all different. For example, a precise measurement over time might never yield
the same exact measurement within each bucket, and therefore the mode rule of
the algorithm seldom applies. When some y-value occurs more often than others
in a bucket, the algorithm simply selects the leftmost data point with the highest
frequency as in figure 2.2.

Figure 2.2: The left gray point is selected for the bucket (between the dashed lines)
since the gray points have the same y-value

Another minor issue arises if the global peak and trough both occur in the same
bucket. Then the peak is always used no matter what the value of the trough is.
Incidentally, the absolute height of the trough might be much greater than that of
the peak.

7

2. Intuitive Downsampling Algorithms

2.2. Min-Std-Error-Bucket

This algorithm was designed as part of the current study. It is based on linear
regression and uses the formula for the standard error of the estimate (SEE) to
downsample data. The SEE is a measure of the accuracy of predictions made with
a regression line when a linear least squares technique is applied. The greater the
error the more discrepancy between the line and the data points. Of course one line
through all data is not very useful. Thus, the original data needs to be split up into
buckets and then multiple lines calculated between points in the buckets.

Before setting forth a detailed description of the algorithm it is worth mentioning
that it is not really a practical solution, merely an exploration of using certain
concepts, e.g., the standard error. Even if the algorithm produces a statistically
good line chart, it is not a very good visual representation since it smooths out
many of the peaks and troughs of the line chart.

First the original data is split up into approximately the same number of buckets as
the downsampling threshold. The first and last buckets contain only the first and
last original data points; that way the first and last original data points are always
included in the downsampled data. A line is then calculated from all the points in
one bucket to all the points in the next bucket as shown in figure 2.3 below.

Figure 2.3: Data with 8 points split up into 5 buckets

Now each data point has the same number of outgoing lines as the number of data
points in the succeeding bucket. These lines are not really regression lines since they
are calculated between two real data points but are still kind of a possible estimation
from one bucket to the next. Also, the only relevant segment of a line in this context
is between the two points. The vertical distance from all the data points between
those two points and the line can then be used to calculate the standard error of the
line segment, relative to the data points that it passes by. For example in figure 2.4

8

2.2. Min-Std-Error-Bucket

the line AC passes by data point B and the vertical distance between line AC and
point B is e2. Similarly the line AD passes by both point B and C.

A

B

C

D

e e

e

1 2

3

Figure 2.4: Vertical distance between lines and other data points the lines pass by

Now the standard error for each line segment can be calculated with equation 2.1
and each line segment assigned a number which represents how close it is to the
data point that it passes.

SEE =

√√√√√ n∑
i=1

ê2i

n− 2
(2.1)

Standard Error of the Estimate (SEE)

Since the number of buckets is the same as the target threshold, the next step is to
select one point from each bucket. The aim is to have the total sum of the standard
errors of lines between all the selected data points as low as possible. That can
be viewed as a dynamic optimization problem and can be solved with numerous
techniques.

One easy way to visualize this problem is to think of it as a directed acyclic graph
(DAG). All the data points are nodes and the line segments are weighted edges,
the weight being the standard error for the line. All nodes have exactly one edge
out and one edge in, except the first and last nodes. Also, all the edges between
two nodes go over exactly one bucket boundary (dashed lines). Figure 2.5 shows an
example of such a graph.

9

2. Intuitive Downsampling Algorithms

Figure 2.5: A directed acyclic graph representation of figure 2.3

By converting the problem to a DAG it is clear that any path from the first to the
last point gives exactly one data point per bucket. All that remains is just a simple
matter of finding the shortest path between the first and last node and it will be
the total minimal sum of the standard errors. Several algorithms exist to find the
shortest path in a graph but I have chosen to use the Dijkstra’s algorithm. It is
very well known and an example of dynamic programming [10]. After finding the
shortest path, the nodes (data points) along that path from start to finish are listed
up and returned as the downsampled data.

10

2.2. Min-Std-Error-Bucket

Algorithm 2.2 Min-Std-Error-Bucket
Require: data . The original data
Require: threshold . Number of data points to be returned
1: Split the data into equal number of buckets as the threshold but have the first

bucket only containing the first data point and the last bucket containing only
the last data point

2: for each bucket except the last one do
3: for every point in the current bucket do
4: for every point in the next bucket do
5: Calculate a line segment going through the two points
6: Calculate the standard error of the line segment
7: end for
8: end for
9: end for
10: Make a DAG with the edge weight as the standard error for the line segments
11: Find the shortest path from the first node to the last
12: List out the nodes in the shortest path from start to finish

A big problem with this algorithm is that it smooths out the line chart as shown in
figure 2.6, missing many of the local peaks and troughs.

Figure 2.6: Downsampled data (black) and original data (gray)

In downsampling, it is only normal to miss some minor fluctuation but when major
fluctuations are skipped, the line chart can suffer perceptually, giving a poor repre-
sentation of the original chart. In comparing the downsampled data to the original,
one tends to notice when a very large spike is not present any more.

The reason why large spikes are usually not included is fairly simple. The total sum
of all the standard errors of the shortest path is usually lower if the large spikes are
not included.

11

2. Intuitive Downsampling Algorithms

e

e

1

2

A B

C

D

E

(a) Large spike included

A B

C

D

e

e

3

4 E

(b) Large spike not included

Figure 2.7: Two line charts segments showing a spike included and excluded

In figure 2.7(a) an outlier is selected to represent a bucket. Then the total vertical
distance from the points B and D, to the lines is e1+e2. If however point B is used
instead of the outlier (as shown in figure 2.7(b)), the vertical distance from the
points not used to the line is e3+e4. In this example, e1+e2 is larger than e3+e4, so
the shortest path would not include the outlier point. This is often the general case
as well although other factors come into account, such as how far the outlier is.

Another downside to this algorithm is that it has a lot of loose ends. There are other
ways to solve the dynamic optimization problem and maybe a more greedy approach
is adequate. Finding the absolute minimal sum of the standard errors might not be
necessary when a fairly low sum might suffice.

2.3. Longest-Line-Bucket

The most common problem with the algorithms described so far is that local outliers
are often not included in the downsampled line chart. That can be considered a very
serious loss of visual information since the observer might want to explore the reason
for a certain outlier existence. The Min-Std-Error-Bucket (MSEB) described in
section 2.2, certainly falls short in that sense, smoothing out most of the fluctuation.
Still this algorithm is in many ways similar to MSEB, except that it does not try
to minimize the total standard error but instead tries to maximize the total line
length. In principle, a downsampled line chart with a total line length close to the
original line chart should at least cover many of the extreme peaks and troughs.

The Longest-Line-Bucket algorithm was designed as part of the current study and

12

2.3. Longest-Line-Bucket

is very similar to the MSEB algorithm but with some key differences. It starts off
exactly the same, splitting the data points into buckets and calculating lines going
through all the points in one bucket and all the points in the next bucket as was
shown in figure 2.3 on page 8. The main difference is that instead of calculating the
standard error for each line segment it simply calculates its length (Euclidean dis-
tance between the two points defining the line). Then, as with the MSEB algorithm,
the points and lines segments are converted to a directed acyclic graph (DAG) and
the weight of an edge is the length of the corresponding line segment as was shown
in figure 2.5 on page 10. All that remains is to find the longest path through the
graph. The path will contain one point per bucket which forms the longest total
line length through all the buckets.

Finding the longest path in a general graph is a NP-Hard problem and cannot be
computed in polynomial time. However in the case of the graph being a DAG, the
edge weight can simply be changed to its negation, thus changing it to a shortest
path problem. This problem can then be solved with dynamic programming in
exacly the same way as done in the MSEB algorithm, except that maximization
rather than minimization is applied.

Algorithm 2.3 Longest-Line-Bucket
Require: data . The original data
Require: threshold . Number of data points to be returned
1: Split the data into equal number of buckets as the threshold but have the first

bucket only containing the first data point and the last bucket containing only
the last data point

2: for each bucket except the last one do
3: for every point in the current bucket do
4: for every point in the next bucket do
5: Calculate a line segment going through the two points
6: Calculate the length of the line segment . Different from MSEB
7: end for
8: end for
9: end for
10: Make a DAG with the edge weight as the length of the line segments
11: Find the longest path from the first node to the last
12: List out the nodes in the longest path from start to finish

13

2. Intuitive Downsampling Algorithms

This algorithm is much better at including the outliers than both the Mode-Median-
Bucket (MMB) in section 2.1 and the MSEB algorithms. For example, in figure 2.8
it is shown to include all the major outliers. If the MMB or the MSEB were run on
the same data as in the example, most of the outliers would be excluded.

Figure 2.8: Downsampled data (black) and original data (gray)

At first glance, this algorithm performs quite well in a visual sense. Maximizing the
total line length of the line chart seems to be a good concept to follow when down-
sampling data to be displayed as a line chart. But like with the MSEB algorithm the
problem with this algorithm is how complicated and inefficient the current imple-
mentation is. If this algorithm is to become a practical option in a real application,
it would need to be simplified and optimized.

14

3. Cartographic Generalization

All the algorithms described in the preceding chapter (Intuitive Downsampling Al-
gorithms) seem to fall short in some way. Visual representation was not good enough
or the algorithm was not efficient enough. Instead of trying to fix these shortcomings
by modifying the previously described algorithms, a fundamentally new approach
will be considered in this and the following chapter (see chapter 4).

Extensive research has been ongoing in the domain of cartographic generalization
where information, such as coastlines, is processed to be represented on a map. A
line chart is different from a map but there are some similarities. For example,
both may be represented by polylines connecting the data points. One property of
line charts not shared by maps is that every point on the polyline has a strictly
increasing x-value relative to the preceding data point.

3.1. Polyline Simplification Techniques

There are several well known techniques in cartographic generalization regarding
polyline simplification. The evaluation of these algorithms is still an issue of active
research and there is large number of different spatial measurements which can be
used as criteria [9]. Also, the factor of aesthetics plays a big part in cartographics
and some might even say it borders on being art in some cases [4]. All this makes
it somewhat difficult to evaluate cartographic generalization in a deterministic way
and the same can be said about evaluating the correctness of line chart simplification
to some extent.

One of the most common line simplification method is the Douglas-Peucker algo-
rithm [5]. It selects the point that is over a specified threshold and furthest away
from an imaginary line which is initially between the first and the last point of the
polyline. The algorithm then calls itself recursively with the polylines on both sides
of the selected point (including the selected point) until all the points have been
either selected or discarded (fall under the threshold). When the recursion is done
the points which were selected define the simplified polyline.

15

3. Cartographic Generalization

Another, more recent, algorithm to simplify lines is called the Visvalingam–Whyatt
algorithm [11]. The basic idea behind this algorithm is to give all the points a
certain rank based on their significance. The significance of a point is the area size
of a triangle which it forms with its two adjacent points on each side. This is usually
called the effective area of a point. For example, the effective area of point B in
figure 3.1 is area b. The least significance points are then excluded in the simplified
line and the effective areas of the remaining adjacent points recalculated as it has
changed.

A

B

C

D

E

b

c

d

Figure 3.1: Points on a polyline and their effective area

This method of using the effective area of a point to determine its importance seems
like a good idea and useful for downsampling line charts. By using the area size,
both distance between points and angular measures are taken into account. It has
also been suggested that the Visvalingam–Whyatt algorithm outputs aesthetically
better results when faced with extreme simplifications, discarding a high proportion
of the original data [11]. That is certainly a very interesting property since some
large line charts might have to be downsampled and rendered as small images.

3.2. Adapting the Visvalingam–Whyatt Algorithm

Polylines in line charts are more restricted than polylines used in maps. This sug-
gests that an algorithm used to downsample line chart could be a restricted version
of a known line simplification method in cartographic generalization.

One obvious restriction is that the algorithm should not skip too many data points
in a row. That is because that would result in long line segments over parts in the
line chart with minor fluctuations. Such minor fluctuations are indeed information
and their presence has a noticeable perceptual impact for a line chart. For example,
a long line segment over many intervals of the independent variable in a time series

16

3.2. Adapting the Visvalingam–Whyatt Algorithm

could look unusual. It would suggest a linear relationship between the x and y-values
over a long period. That would surely indicate a very definite pattern which is not
really present in the original data.

It is safe to say that most people nowadays are quite used to viewing maps and
indeed are well aware that the lines on maps are simplified. Maps are usually
representations of real places so it is taken for granted that map making involves
reducing the complexity of the real world. In the case of the line chart it is usually
not representing a tangible thing; thus people might not expect any data point
reduction when viewing line charts.

The perception of line charts and other data visualization techniques has been the
topic of discussion and research for a long time [3, 6]. The scope of the research is
very broad and often borders on the field of psychology [2]. For now it suffices to say
that when downsampling data to be displayed as line chart, it is important to retain
as much visual characteristics of the line chart as possible and not suggest any false
patterns because minor fluctuations are indeed a type of visual characteristic.

If the x-values of the points are irregularly spaced the resulting line chart may start
to look “jerky” like in figure 3.2. That might be acceptable if this was a polyline in
a map but for a line chart it is a poor representation of the original line chart.

Figure 3.2: Downsampled line chart using a slightly modified Visvalingam–Whyatt
algorithm (black) skips over many data points in the original data (gray)

One simple way to make sure the algorithms use at least one data point for every
fixed interval is to split the data points into buckets and select one point from each
bucket as was done in chapter 2. Since time series have the independent variable
evenly spaced it is preferable to ensure that the downsampled line chart has at least
some similar properties. That is to say, the independent variables of neighboring
data points are not too far apart.

17

4. Largest Triangle Algorithms

Of the three intuitive downsampling algorithms described in this thesis (see chapter
2), the best by far is the Longest-Line-Bucket (LLB) shown in section 2.3, page
12. The main downside of the LLB algorithm is how inefficient it is and somewhat
complicated (at least how it is implemented in the current study). What is needed
is a simpler and faster technique to select or exclude data points. Fortunately many
such techniques have been studied in the field of cartographic generalization (see
chapter 3) and the algorithms described in this chapter all build on the idea behind
the Visvalingam–Whyatt algorithm using the data points effective area1 (see section
3.2, page 16).

4.1. Largest-Triangle-One-Bucket

This algorithm is very simple. First all the points are ranked by calculating their
effective areas. Points with effective areas as null are excluded. The data points
are then split up into approximately equal number of buckets as the specified down-
sample threshold. Finally, one point with the highest rank (largest effective area) is
selected to represent each bucket in the downsampled data.

Figure 4.1: The gray points have the largest effective area

1Effective area of a point is the area size of a triangle it forms with its two adjacent points.

19

4. Largest Triangle Algorithms

As shown in figure 4.1, the gray points will be selected since they have the largest
effective area of the points in their bucket.

Algorithm 4.1 Largest-Triangle-One-Bucket
Require: data . The original data
Require: threshold . Number of data points to be returned
1: Rank every point in regard to its effective area
2: Split the data into the same number of buckets as the threshold
3: for each bucket do
4: Select the point with the highest rank within the bucket
5: end for
6: Finally make sure that the first and last data points in the original data are also

the first and last data points in the downsampled data.

One issue with this algorithm is that the ranking (effective area) of a point only
depends on its two adjacent points. It is perhaps not an apparent issue but it can
lead to bad representation of the original line chart in certain cases. For example,
if the data points are fluctuating rapidly, the algorithm tends to output a line chart
which “travels” on top of the local peaks or troughs of the original data. An example
of this effect can be seen in figure 4.2. It is still fair to mention that this is more
noticeable when the downsampling threshold is very low with regard to the number
of original data points.

Figure 4.2: Downsampled line chart (black) with the Largest-Triangle-One-Bucket
algorithm

A good analogy is to say that this algorithm is extremely short-sighted and is almost
totally blind to anything beyond the nearest points. In comparison the Longest-Line-
Bucket (LLB) algorithm (see section 2.3) is a global routine that considers all the
points in the original line chart.

20

4.2. Largest-Triangle-Three-Buckets

(a) Largest-Triangle-One-Bucket (b) Longest-Line-Bucket

Figure 4.3: Largest-Triangle-One-Bucket compared to the Longest-Line-Bucket

Despite the algorithm’s short-sightedness, it nonetheless produces comparable visual
results as the LLB algorithm as shown in figure 4.3; and when taking into account
how simple and efficient it is, it seems like a good choice for a downsampling algo-
rithm at first glance.

4.2. Largest-Triangle-Three-Buckets

In the last section (see 4.1) the Largest-Triangle-One-Bucket (LTOB) algorithm was
said to be somewhat short-sighted, only considering the two adjacent points when
calculating the effective area of a point. With this in mind an obvious question is:
Can the effective area of a point be larger and in a sense make the algorithm see
further? As it turns out, this concept is well worth exploring. With the algorithm
discussed in this section, the effective area of a point does not depend on the position
of its two adjacent points but on the points in the previous and next buckets, making
the possible effective area much larger.

The first step is to divide all the data points into buckets of approximately equal
size. The first and last buckets however contain only the first and last data points
of the original data as shown in figure 2.3 on page 8. This is to ensure that those
points will be included in the downsampled data.

The next step is to go through all the buckets from the first to the last and select
one point from each bucket. The first bucket only contains a single point so it is
selected by default. The next bucket would then normally contain more than one
point from which to choose. Here the algorithm differs from the LTOB since the
rank of a point is calculated from the effective areas that the point can form with
other points in the adjacent buckets.

21

4. Largest Triangle Algorithms

The algorithm works with three buckets at a time and proceeds from left to right.
The first point which forms the left corner of the triangle (the effective area) is always
fixed as the point that was previously selected and one of the points in the middle
bucket shall be selected now. The question is what point should the algorithm use
in the last bucket to form the triangle.

The obvious answer is to use a brute-force approach and simply try out all the
possibilities. That is, for each point in the current bucket, form a triangle with all
the points in the next bucket. It turns out that this gives a fairly good visual result
but as with many brute-force approaches it is inefficient. For example, if there were
100 points per bucket, the algorithm would need to calculate the area of 10,000
triangles for every bucket. Another and more clever solution is to add a temporary
point to the last bucket and keep it fixed. That way the algorithm has two fixed
points; and one only needs to calculate the number of triangles equal to the number
of points in the current bucket. The point in the current bucket which forms the
largest triangle with these two fixed point in the adjacent buckets is then selected.
In figure 4.4 it is shown how point B forms the largest triangle across the buckets
with fixed point A (previously selected) and the temporary point C.

A

B

C

Figure 4.4: Largest triangle formed across three buckets and point C being a tempo-
rary point in the last bucket

22

4.2. Largest-Triangle-Three-Buckets

There is still the matter of how this temporary point in the next bucket should be
decided. A simple idea is to use the average of all the points in the bucket. In most
cases this is seem to work just as well as the brute-force approach but much more
efficient. In figure 4.5 it is clear that the line charts are almost identical whether
the brute-force or the point average approach is used.

(a) Average point method (b) Brute-force method

Figure 4.5: Line charts comparing the average and the brute-force method in calcu-
lating the largest triangle

Algorithm 4.2 Largest-Triangle-Three-Buckets
Require: data . The original data
Require: threshold . Number of data points to be returned
1: Split the data into equal number of buckets as the threshold but have the first

bucket only containing the first data point and the last bucket containing only
the last data point

2: Select the point in the first bucket
3: for each bucket except the first and last do
4: Rank every point in the bucket by calculating the area of a triangle it forms

with the selected point in the last bucket and the average point in the next
bucket

5: Select the point with the highest rank within the bucket
6: end for
7: Select the point in the last bucket . There is only one

This algorithm has a lot fewer problems than all the previous algorithms described.
It is both efficient and robust. Also, it is simple, portable and outputs a very good
visual representation of the original line chart in most cases.

23

4. Largest Triangle Algorithms

The biggest problem is not really how the points are selected within the buckets but
rather how the points are divided into buckets. This algorithm uses roughly equal
sized buckets (except for the first and last buckets) to make sure a point is selected
for every fixed interval on the x-axis. The problem is that some line charts have
somewhat irregular fluctuations. For example, some parts of the line chart might
be relatively calm and other parts might fluctuate violently like is shown in figure
4.6 (downsampled line chart with the Largest-Triangle-Three-Buckets algorithm for
this data is shown in figure 4.12 on page 29).

Figure 4.6: Exchange rate of the Icelandic Krona shooting up during the financial
crisis of 2008 (contains 3,987 data points)

The problem is that not all buckets can be visually represented fairly with just
one point and some buckets might not even need to be represented at all (if the
local fluctuation is very small). This is at least the case if all the buckets have
approximately the same number of points and the algorithm selects only one point
from each bucket. This problem also exists in all the previous algorithms which
rely on this roughly equal bucket dividing concept. However, since most of those
algorithms had other more serious problems, this problem was less noticeable.

Perhaps one of the most apparent example of how equal sized buckets can result in
a bad representation is when there is a sudden and sharp spike in the data, like a
distant outlier. The algorithm would select this outlier in the bucket but it could
not select the points next to the outlier since those points are most likely in the
same bucket (only one point can be selected per bucket).

24

4.3. Largest-Triangle-Dynamic

Figure 4.7: Downsampling data with distant outliers

The result is that even if the outlier is only a single point, the downsampled line
chart indicates that the peak or trough is less sharp than in the original data.
This is shown in figure 4.7 with the outliers (e.g., A and B). The more extreme
the downsampling, the more visible this effect becomes, since each bucket contains
more points. However, it is questionable whether such extreme downsampling can
be considered practical since there will always be a big trade-off between visual
characteristics, irrespective of which points are selected.

4.3. Largest-Triangle-Dynamic

In contrast to the other algorithms, the name of this algorithm does not end on the
word “bucket” but on the word “dynamic.” The reason is that this algorithm does
not rely on equal size buckets but allows a dynamic bucket size. If a part of the
line chart is fluctuating greatly, the buckets become smaller; and if another part is
relatively calm, the buckets become larger.

The algorithm is really an attempt to address the biggest problem with the Largest-
Triangle-Three-Buckets (LTTB) algorithm (see section 4.2). Having a dynamic
bucket size is not a complicated idea but some interesting challenges remain as
to how it can be efficiently implemented.

Given that the total number of buckets should be the same as the specified down-
sample threshold, the only thing required is a method to determine the sizes of the
buckets. For that purpose, information on the line chart has to be known in order
to implement the algorithm, i.e., where the line chart is fluctuating and where is it
relatively calm. There are a number of ways how this can be calculated; and some
ideas were indeed implemented and tried out with some success.

25

4. Largest Triangle Algorithms

Another way to examine this problem is to state that initially all the buckets are
approximately the same size and then are resized in an iterative way. In other words,
instead of trying to find the absolute optimal configuration of the bucket sizes, the
aim is rather to address the worst cases which are most noticeable by a human
observer.

The first step is to assign a number to all buckets which indicates whether a bucket
needs to be smaller or larger, if only one point is supposed to represent the bucket.
An obvious way to calculate this number is to apply a simple linear regression for all
buckets. The last point in the previous bucket and the first point in the next bucket
are also included in the regression, thus the data in the buckets overlap slightly as
seen in figure 4.8.

e
1

e
3

e
2

e
4

e
6

e
5

Figure 4.8: A regression line (gray) through a bucket

After calculating a regression line for a bucket (with one extra point overlapping
for each adjacent bucket) the sum of squared errors (SSE) can easily be worked out
with equation 4.1. The SSE for all the buckets can then be used to rank them.

SSE =
n∑

i=1

e2i (4.1)

Sum of squared errors (SSE)

If the SSE for a bucket is relatively high, it means that the data points within the
bucket would most likely be better represented as two buckets. If however the SSE is
relatively low for a bucket, it can be merged with either one of the adjacent buckets,
if one of them also has a relatively low SSE.

After all the initial buckets have been ranked, the next step is to either split or
merge them accordingly. Find the bucket which has the highest rank (largest SSE)

26

4.3. Largest-Triangle-Dynamic

and split it up into two buckets. That will result in one extra bucket so some other
two buckets (adjunct to each other) need to be merged to maintain the total bucket
count. This is done by looking for the adjacent bucket pair which has the the lowest
total SSE sum and merging them.

In figure 4.9 the line chart has six buckets and it is quite apparent that buckets A
and B have a lot less fluctuation than bucket F. Therefore the rank of bucket F is
higher than both buckets A and B

A B C D E F

Figure 4.9: A line chart divided into six equal parts

If the algorithm were applied to the data in figure 4.9 and given that bucket F had
the highest rank (largest SSE), the bucket sizes would be as is shown in figure 4.10
after to one iteration. Bucket F has been split up into two buckets and buckets A
and B have been merged. Subsequent to each iteration, the SSE for the new buckets
has to be calculated. With regard to the figure 4.10, it means that the algorithm
has to calculate the SSE for buckets M, J and K.

M JC D E K

Figure 4.10: A line chart divided into six parts

After a given number of iterations the algorithm needs to halt (on some predeter-
mined condition). The simplest condition is to have the algorithm halt after a fixed
number of iterations. Even after just a few iterations, there is a noticeable visual
difference since the buckets with the most SSE are split up first. However, the cur-
rent implementation of the algorithm uses a simple formula to determine how many
iterations are required. The original data point count is divided by the downsampled
threshold times ten as shown in formula 4.2.

27

4. Largest Triangle Algorithms

Original Count

Threshold× 10
(4.2)

Formula to calculate the number of iterations

For example, if 1,000 points are to be downsampled down to 900 points, the algo-
rithm runs 11 iterations. If however the 1,000 points need to be downsampled down
to 50, the algorithm runs 200 iterations.

When the iteration has halted, the last step is to run the LTTB algorithm on the
final bucket configuration to select one data point from each bucket. In short, this
algorithm can be described by saying it is just the LTTB algorithm using dynamic
bucket sizes.

Figure 4.11: Line chart downsampled using Largest-Triangle-Dynamic down to 100
points, showing bucket division as vertical bands

As expected, this algorithm turns out to be especially effective in the case of irregular
data. In figure 4.11 the bucket division is visible, showing how the algorithm applies
smaller buckets for those parts which fluctuate relatively more, at the right end of
the line chart. When the LTTB algorithm is fed the same data and downsample
threshold, it is apparent that the far right side of the line chart in figure 4.12 has a
considerable worse visual representation in comparison with figure 4.11.

28

4.3. Largest-Triangle-Dynamic

Figure 4.12: Line chart downsampled with Largest-Triangle-Three-Buckets down to
100 points

Algorithm 4.3 Largest-Triangle-Dynamic
Require: data . The original data
Require: threshold . Number of data points to be returned
1: Split the data into equal number of buckets as the threshold but have the first

bucket only containing the first data point and the last bucket containing only
the last data point . First and last buckets are then excluded in the bucket
resizing

2: Calculate the SSE for the buckets accordingly . With one point in adjacent
buckets overlapping

3: while halting condition is not met do . For example, using formula 4.2
4: Find the bucket F with the highest SSE
5: Find the pair of adjacent buckets A and B with the lowest SSE sum . The

pair should not contain F
6: Split bucket F into roughly two equal buckets . If bucket F contains an odd

number of points then one bucket will contain one more point than the other
7: Merge the buckets A and B
8: Calculate the SSE of the newly split up and merged buckets
9: end while.

10: Use the Largest-Triangle-Three-Buckets algorithm on the resulting bucket con-
figuration to select one point per buckets

Although this algorithm can produce a good visual representation of a line chart, it
is not without issues. As mentioned before, this algorithm gives the best results if
the data is irregular. When the data is highly regular over the whole line chart, the
algorithm appears no better than the LTTB algorithm (it might even sometimes be
a little worse).

29

4. Largest Triangle Algorithms

Perhaps the main problem has to do with how this algorithm could be optimized for
better performance because it is currently rather slow in comparison with the LTTB
algorithm. Clearly there is room for improvements, especially in the iteration step.
However, in scenarios where speed is not essential, the algorithm can surely be of
use, e.g., if it does not matter whether it takes a second or one tenth of a second to
downsample the data

Another issue is determining the halting condition. As it is implemented, the halting
condition is calculated with a simple formula which takes in the data point count and
downsample threshold. It does not take into account the nature of the line chart.
It might be smooth, fluctuating or both. Another strategy is to consider what
really happens statistically when the buckets get split up and merged accordingly.
With each iteration the standard deviation of the buckets SSE should decrease, that
is, the variation of the buckets SSE get closer to the bucket’s mean SSE. So after
a given number of iterations the reduction of the standard deviations slows down
considerably. This fact could be applied to construct a condition for the algorithm
to halt. The algorithm would halt if the SSE change, from one iteration to the next,
falls below a certain threshold. The downside of this approach is that this requires
more calculation per iteration.

30

5. Survey

In order to get a more neutral point of view on the quality of the algorithms, a
survey was designed to compare the visual characteristics of an original line chart
to a set of downsampled line charts. The initial idea was to have people choose
which downsampled line chart they would prefer to represent the original. The
downside to that approach is that even if the majority of people choose one particular
downsampled line chart, it would say little about other downsampled line charts
which people might have chosen. For example, some line charts might never be
chosen and then it would be impossible to say anything about which of those is most
or least effective. In order to collect more data the survey was designed in such a
way that people were asked to order the downsampled lines charts from the best
representation to the worst. Thus, the survey would yield some information about
all choices of the downsampled line charts and also how good or bad a representation
a downsampled line chart is relative to the other choices.

In addition to the problems related to how the survey should be designed, it had
some technical and human interface considerations which proved to be more difficult
than expected. Because the survey was designed in a somewhat nonstandard way,1
with participants asked to order images, no typical online questionnaire tool could
be used2. Instead the survey had to be programmed from scratch to accommodate
all the special requirements which emerged while designing it.

Another big issue had to do with human usability. The survey had to be as user
friendly as possible. The first idea was to have people enter a number for each
downsampled line chart to indicate the order. That would foreseeably have frus-
trated some participants, requiring them to manually enter numbers. A better way
was applied: to enable participants to drag and drop the downsampled line chart in
whatever position they wanted. It was also a more intuitive way since dragging and
dropping has become quite common on websites which enable users to customize
their display. Participants could also change the order of the downsampled line
charts by moving them up or down with special buttons attached to all the down-
sampled line charts. In addition, there was an option to pin the original line chart
in place so people would not have to scroll all the way up in order to compare the

1Not using Likert scale or other multiple choice question setup common in surveys.
2Many free online questionnaire tool exists like http://www.surveymonkey.com/

31

http://www.surveymonkey.com/

5. Survey

original line chart to the downsampled version below. These features and more were
all aimed at making the survey as easy to use as possible.

Figure 5.1: Screenshot of the first survey question (top only)

5.1. Questions

In order to keep the survey short it only consisted of nine questions (not including
two questions about participant’s age and education). In each question the partic-
ipant was shown the original line chart and a number of downsampled line charts
(displayed in a random order for each participant) using different methods and set-
tings. The participant’s task was then to order the downsampled line charts from
the best to the worst representation relative to the original line chart. It was specifi-
cally noted that the participant should just order the downsampled line charts after

32

5.1. Questions

their own preference and not spend more than a minute on each question.

The questions all stated the same instruction, to order the line charts from the best
to the worst visual representation of the original chart. That is not without some
ambiguity since a good visual representation is not really a well defined measure-
ment. The instruction was kept a little vague on purpose, so that each participant
could decide what a good representation meant. This may have caused some minor
confusion since some participants might have expected a more detailed instruction.
For example, order the downsampled line charts in an aesthetically pleasing order or
in the order in regard to how closely the downsampled line charts resemble the orig-
inal. One of the assumptions of this thesis is that both aesthetics and resemblance
matter and this survey was designed to give some insight into what a good visual
representation really means for people in the context of downsampled line charts.

(a) The Icelandic Krona
exchange rate (3,987 data
points)

(b) Randomly generated
line chart (7,000 data
points)

(c) Melbourne tempera-
ture over 10 years (3,650
data points)

Figure 5.2: All the survey questions used one of three line charts shown in the
subfigures

The line charts shown in figure 5.2 were chosen because they demonstrate different
visual characteristics. The line chart of the Icelandic Krona exchange rate is quite
irregular with the first part relatively smooth compared to the second part. The ran-
domly generated line chart has the typical “bold” line effect expected when multiple
data points are drawn on a very small area. The line chart of the temperature in
Melbourne over ten years demonstrates sharp peaks and troughs but with a regular
periodic pattern (because of the seasons). Several downsampling examples for these
line charts can be seen in appendix C.

All the downsampling algorithms described in this thesis were included in the survey
to some extent but the main emphasis was on the algorithms based on the Largest-
Triangle concept (see chapter 4). The reason is that those algorithms seemed more
practical and thus it is important to get more information on them.

The first question used the Icelandic Krona exchange rate (see figure 5.2(a)) as the
original line chart and then three downsampled versions (containing 500 data points
each) using the intuitive algorithms3 (see chapter 2). This question served as a kind

3Mode-Median-Bucket, Min-Std-Error-Bucket and Longest-Line-Bucket.

33

5. Survey

of a practice in order to train the participants in ordering the downsampled charts.
It did also have some analytical purpose in comparing the intuitive downsampling
algorithms.

The next six questions all involved the Largest-Triangle algorithms4, comparing dif-
ferent downsampling thresholds (300, 500 and 700 data points) on two different
data sources, the Icelandic Krona exchange rate and the Randomly generated line
chart (see figure 5.2(b)). The purpose was to determine if one algorithm was gen-
erally most effective or if it varied depending on the downsample threshold and
the data source. For example, whether the Largest-Triangle-Three-Buckets would
consistently score better than the other algorithms.

The next question used the Melbourne temperature data as the original line chart
(see figure 5.2(c)) and three downsampled versions using the Largest-Triangle algo-
rithms with the downsample threshold at 500 data points. Because the Melbourne
temperature is very periodic and the line chart “squashed,” it was interesting to see
what algorithm people would prefer.

The final question consisted of all the six algorithms, described in this thesis, down-
sampling the Icelandic Krona exchange rate data down to 200 data points (about
5% of the original data points). After answering eight similar questions, it was ex-
pected that the participants would be more used to the question format and could
handle more than just three downsampled versions to order. It was also important
that one of the questions involved all the downsampling algorithms, in order to have
a comparison between them all in the same context. List of all the survey questions
is shown in table 5.1.

4Largest-Triangle-One-Bucket, Largest-Triangle-Three-Buckets and Largest-Triangle-Dynamic.

34

5.2. Participants

Question
number

Data source Original
count

Algo-
rithms

Threshold

1 Icelandic Krona exchange rate 3,987 Intuitive 500
2 Randomly generated line chart 7,000 Largest-

Triangle
700

3 Icelandic Krona exchange rate 3,987 Largest-
Triangle

300

4 Randomly generated line chart 7,000 Largest-
Triangle

500

5 Icelandic Krona exchange rate 3,987 Largest-
Triangle

500

6 Randomly generated line chart 7,000 Largest-
Triangle

300

7 Icelandic Krona exchange rate 3,987 Largest-
Triangle

700

8 Melbourne temperature (10 years) 3,650 Largest-
Triangle

500

9 Icelandic Krona exchange rate 3,987 All 200

Table 5.1: Order and setup of the survey questions

5.2. Participants

The survey was open to everybody and 58 participants took part over the course of
about two weeks. DataMarket advertised the survey on their Twitter page and the
University of Iceland also sent out emails to all students in computer science and
software engineering.

Age range Count
18-24 6
25-30 18
31-40 27
41-50 5
51-60 2

Table 5.2: Age distribution of participants in the survey

Most participants were between 25 and 40 (see table 5.2) and the majority of the
participants had a university degree (see table 5.3). It is safe to assume that most
of them had some experience in viewing line charts.

35

5. Survey

Education Count
Some high school 1
High school graduate 2
Some college credit 13
Bachelor’s degree 27
Master’s degree 11
Doctorate degree 4

Table 5.3: Education level of participants in the survey

5.3. Survey Results

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Mode-Median-
Bucket

Min-Std-Error-
Bucket

Longest-Line-
Bucket

Icelandic Krona Exchange Rate (500, Intuitive)

Figure 5.3: Survey results for the Icelandic Krona exchange rate down to 500 data
points using the intuitive algorithms

As shown in figure 5.3, most participants ordered the Min-Std-Error-Bucket al-
gorithm in the last place and thus considered to give worst representation of the
orgiginal line chart (see section 2.2). The most effective algorithm was the Longest-
Line-Bucket (see section 2.3) which majority of participants ordered in first place,
giving the relatively best representation of the original line chart.

36

5.3. Survey Results

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Randomly generated line chart (700, Largest-Triangle)

Figure 5.4: Survey results for the randomly generated line chart down to 700 data
points using the Largest-Triangle algorithms

In figure 5.4, it is clear that when the downsampling threshold is high (700 data
points), the difference between the algorithms based on the Largest-Triangle concept
was quite small. The Largest-Triangle-One-Bucket (see section 4.1) algorithm was
only considered slightly better for the random line chart.

37

5. Survey

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Icelandic Krona Exchange Rate (700, Largest-Triangle)

Figure 5.5: Survey results for the Icelandic Krona exchange rate down to 700 data
points using the Largest-Triangle algorithms

When the Icelandic Krona exchange rate was downsampled down to 700 data points,
the Largest-Triangle-One-Bucket algorithm was noticeably the least effective and the
result from the other two algorithms was very similar. It is important to bear in
mind that the Icelandic Krona exchange rate is an example of a rather irregular line
chart so the fact that the Largest-Triangle-One-Bucket did relatively bad comes as
no surprise.

Decreasing the downsampling threshold from 700 down to 500 produced some dif-
ferent results for the Largest-Triangle algorithms as the next two figures show.

38

5.3. Survey Results

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Randomly generated line chart (500, Largest-Triangle)

Figure 5.6: Survey results for the randomly generated line chart down to 500 data
points using the Largest-Triangle algorithms

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Icelandic Krona Exchange Rate (500, Largest-Triangle)

Figure 5.7: Survey results for the Icelandic Krona exchange rate down to 500 data
points using the Largest-Triangle algorithms

39

5. Survey

When the downsample threshold was set to 500 data points the Largest-Triangle-
One-Bucket algorithm was shown to give the worst representation of the original
line chart for both data sources, the randomly generated line chart and the Icelandic
Krona exchange rate. It was considerably worse for the Icelandic Krona exchange
rate but only slightly worse for the randomly generated line chart. The other two
algorithms, Largest-Triangle-Dynamic (see section 4.3) and Largest-Triangle-Three-
Buckets (see section 4.2), were still on par with each other.

The next two figures show the same two data sources downsampled using the
Largest-Triangle algorithms down to 300 data points which has to be considered
substantial.

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Randomly generated line chart (300, Largest-Triangle)

Figure 5.8: Survey results for the randomly generated line chart down to 300 data
points using the Largest-Triangle algorithms

40

5.3. Survey Results

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Icelandic Krona Exchange Rate (300, Largest-Triangle)

Figure 5.9: Survey results for the Icelandic Krona exchange rate down to 300 data
points using the Largest-Triangle algorithms

The Largest-Triangle-Three-Bucket algorithm emerges as the winner when down-
sampling down to 300 data points, although the Largest-Triangle-Dynamic algo-
rithm is not far behind.

41

5. Survey

0.0 0.5 1.0 1.5 2.0 2.5
Average order (lower is better)

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Melbourne temperature (500, Largest-Triangle)

Figure 5.10: Survey results for the Melbourne temperature down to 500 data points
using the Largest-Triangle algorithms

In the second last question, participants were asked to evaluate the downsampling
of the Melbourne temperature line chart over 10 years (see figure 5.10). This data
has some different characteristics compared to the other data sources used in the
survey, containing highly periodic trends and a very dense data distribution. The
result was rather conclusive, the Largest-Triangle-Three-Buckets algorithm was con-
sidered by far to give the best representation of the original line chart. Both of the
other algorithms were substantially less effective but to an almost equal extent. It
is worth mentioning that the Largest-Triangle-Dynamic algorithm would probably
have produced a better result if it had been implemented with a different halting
critera. If it would have halted sooner, the result would be more like the result of
the Largest-Triangle-Three-Bucket.

42

5.3. Survey Results

0 1 2 3 4 5 6
Average order (lower is better)

Mode-Median-
Bucket

Min-Std-Error-
Bucket

Longest-Line-
Bucket

Largest-Triangle-
One-Bucket

Largest-Triangle-
Three-Buckets

Largest-Triangle-
Dynamic

Icelandic Krona Exchange Rate (200, All)

Figure 5.11: Survey results for the Icelandic Krona exchange rate down to 200 data
points using all the algorithms

The final question gave participants the task to order all the algorithms described in
this thesis in a relative order from the best to the worst representation of the original
line chart (Icelandic Krona exchange rate). The downsampling threshold was also set
very low, so that the algorithms would produce line charts with some easily observ-
able differences. The Largest-Triangle-Dynamic algorithm yielded the best results
according to the survey. This comes as no surprise since extreme downsampling of ir-
regular data is one of its strong points. Not far behind was the Longest-Line-Bucket
algorithm. That was a bit surprising seeing as it is one of the intuitively designed
algorithms, with little theoretical foundations (at least in the papers I reviewed).
In retrospect, it would have been interesting to have some more survey data on it
(it was only included in 2 of the 9 survey questions). The other intuitive downsam-
pling algorithms, Min-Std-Error-Bucket and Mode-Median-Bucket (see section 2.1),
were the least favorable algorithms according to the survey. Finally, consistent with
the results from the other questions, the Largest-Triangle-Three-Bucket algorithm
proved quite favorable among the survey participants.

43

6. Overview Comparison of the
Downsampling Algorithms

Six algorithms have been described in this thesis and analyzed to some extent. Also,
an online survey has been conducted to give some insight into what people would
prefer when given a choice between those algorithms. The next step is to assess
these different types of information and merge it into a comparison matrix. The
factors chosen to be represented in the comparison are listed below.

Speed and scalability
A downsample algorithm should be quick to process typical inputs. It is also im-
portant to have some guarantee that the algorithm will complete its task within a
reasonable time frame for very large inputs.

Simple time measurement in the test suite (see appendix A) with different downsam-
pling settings and data sources are useful in this case but not conclusive as it does
not reveal the scalability, i.e., how the algorithm speed depends on the number of
original data points (although it certainly gives some hints). Conducting a detailed
asymptotic analysis for all the algorithms is somewhat complicated, especially since
some of them are implemented in part with external libraries. Also, these algorithms
focus more on testing the underlying concepts (namely, how to select the data points
to represent the data) rather than optimizing the implementation for each one. Still,
it is relatively easy to get an intuitive sense of the scalability for each downsampling
algorithm, whether it is logarithmic, linear, polynomial or something else.

Complexity and portability
The simpler the better, because it makes the algorithm easier to understand and less
likely to contain faults. In addition, a chosen algorithm needs to be easily portable to
other programming languages and environments. Dependence on complex external
libraries is not ideal since those libraries would then also need to be ported (if no
equivalent libraries are to be found for the target environment).

There are a number of metrics which can indicate the complexity of an algorithm.
The number of code lines (LOC) is one. Another way is to calculate the cyclomatic
complexity [7]. However the McCabe’s cyclomatic complexity has been somewhat
criticized and some say it lacks the theoretical foundations and in some cases not

45

6. Overview Comparison of the Downsampling Algorithms

being any better than using the number of code lines [8]. The equally important
issue of portability is related to the complexity. Simple algorithms are easier to code
in other programming languages. It is important when assessing the portability of
a downsampling algorithm to note what, if any, helper functions/methods are re-
quired to run the algorithm efficiently. For example, the Largest-Triangle-Dynamic
algorithm (see section 4.3) would benefit greatly by using an optimized linear al-
gebra library (which might not be available in all programming languages) while
the Largest-Triangle-Three-Buckets algorithm (see section 4.2) can be implemented
quite efficiently without using any optimized third party libraries, thus making it
far more portable in that sense.

Correctness
The downsampled data should be a good visual representation of the original data
and keep the “spirit” of the line chart, even if it contains just a fraction of the original
data point count.

This is probably the most elusive metric and even the name “correctness” is some-
what imprecise as it might imply that a result has some kind of a general quantifiable
score of correctness. In actuality, it depends on many factors like what kind of data
is being downsampled and even who is looking at it and what is his/her background.
For example, a meteorologist and a financial analyst might notice different things
about a line chart. The survey conducted (see chapter 5) was used to help determine
the general correctness of each algorithm and the last question, which compared all
the six downsampling algorithms, weighted the most heavily in that regard.

46

6.1. Comparison Matrix

6.1. Comparison Matrix

The assessments are represented in the following comparison matrix with solid black
points, three being the most effective for the corresponding factor and one being the
least effective. The methodology used to determine the number of points is fairly
simple. First the most effective and the least effective algorithms for each factor are
identified. These two algorithms mark the top and the bottom of a scale split up
into three equal parts. The number of points for the other algorithms then depend
on where they are positioned on the scale relative to the most and the least effective.
This is only a rough comparison which relies more on qualitative assessments rather
than on precise quantifiable measurements.

Speed and
scalability

Complexity
and

portability

Correctness

Mode-Median-Bucket ••• ••• •◦◦
Min-Std-Error-Bucket •◦◦ •◦◦ •◦◦
Longest-Line-Bucket •◦◦ ••◦ •••

Largest-Triangle-One-Bucket ••• ••• ••◦
Largest-Triangle-Three-Buckets ••• ••• •••

Largest-Triangle-Dynamic ••◦ •◦◦ •••

Table 6.1: Comparison of the downsampling algorithms

47

7. Conclusion, Discussion and
Future Work

The stated primary objective of this thesis was to design and implement a few
algorithms which could downsample data in order to produce a viable visual repre-
sentation and, moreover, to compare those algorithms in order to determine which
are the most practicable. As it turned out, the Largest-Triangle-Three-Buckets al-
gorithm (see section 4.2) was both efficient and produced good results for most
cases. Already it is being put to use by DataMarket and is reported to be a great
improvement over their previous method of downsampling data (see section 2.1). It
has also been published on GitHub under a free software license1 as a plugin for
a popular line chart library (see appendix D). The Largest-Triangle-Dynamic algo-
rithm (see section 4.3) also yielded some positive results, especially when extreme
downsampling was applied on erratic data, containing both relatively smooth and
fluctuating parts.

The second objective was perhaps a bit more elusive since it involved stating some-
thing about human perception on downsampled line charts. The online survey con-
ducted (see chapter 5) provided some good insights and certainly reinforced some
general assumptions, such as the importance of retaining the outliers. The survey
also indicated that even if a downsampled line chart were in fact a good statistical
representation, it would not thereby count as a good visual representation. In other
words, downsampling data to be applied in a statistical manner and to be put forth
in a visual manner, can require two different approaches.

Downsampling a line chart, using only a small fraction of the original data points,
can be a challenging enterprise. One analogy to demonstrate why that is so, is to ask
someone to downsample a paragraph (like this one), that is, select a fixed number
of words to represent the paragraph so it can be read and understood by everyone.
It would be easy if only a few words needed to be excluded but a lot harder if
majority of the words need to be removed. Additionally, there had to be a general
deterministic method, which could be applied on other paragraphs, to exclude any
fixed number of words. It must however be admitted that downsampling line charts
it not quite that hard.

1The MIT License: http://opensource.org/licenses/MIT

49

http://opensource.org/licenses/MIT

7. Conclusion, Discussion and Future Work

For future work, it might be prudent to explore other polyline simplification al-
gorithms applied in cartographic generalization to adapt them for the purpose of
simplifying line charts. Furthermore, similar to cartographic generalization, what is
needed is a deeper understanding of how line charts are perceived [11], what char-
acteristics have the most perceptual impact and to what degree. Is, for example,
the absence of a peak generally more noticeable than an absence of a trough? How
important is it, likewise, to retain small fluctuations? The answers to questions of
this kind might appear trivial but in the case of extreme downsampling, the algo-
rithm needs to make certain determinations as to the downsampling of a line chart
resulting in trade-off between many visual characteristics. It would surely help to
know which visual characteristics are more important than others.

50

Bibliography

[1] Daniel Barbar’a, William DuMouchel, Christos Faloutsos, Peter J Haas,
Joseph M Hellerstein, Yannis Ioannidis, HV Jagadish, Theodore Johnson, Ray-
mond Ng, Viswanath Poosala, et al. The new jersey data reduction report. In
IEEE Data Engineering Bulletin. Citeseer, 1997.

[2] Patricia A Carpenter and Priti Shah. A model of the perceptual and concep-
tual processes in graph comprehension. Journal of Experimental Psychology:
Applied, 4(2):75, 1998.

[3] William S Cleveland and Robert McGill. Graphical perception: Theory, exper-
imentation, and application to the development of graphical methods. Journal
of the American Statistical Association, 79(387):531–554, 1984.

[4] Denis Cosgrove. Maps, mapping, modernity: Art and cartography in the twen-
tieth century. Imago Mundi, 57(1):35–54, 2005.

[5] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Carto-
graphica: The International Journal for Geographic Information and Geovisu-
alization, 10(2):112–122, 1973.

[6] Jeffrey Heer, Nicholas Kong, and Maneesh Agrawala. Sizing the horizon: the
effects of chart size and layering on the graphical perception of time series
visualizations. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1303–1312. ACM, 2009.

[7] Thomas J. McCabe. A complexity measure. Software Engineering, IEEE Trans-
actions on, (4):308–320, 1976.

[8] Martin Shepperd. A critique of cyclomatic complexity as a software metric.
Software Engineering Journal, 3(2):30–36, 1988.

[9] Wenzhong Shi and ChuiKwan Cheung. Performance evaluation of line sim-
plification algorithms for vector generalization. Cartographic Journal, The,
43(1):27–44, 2006.

[10] Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming
connexion. Control and cybernetics, 35(3):599, 2006.

51

BIBLIOGRAPHY

[11] Maheswari Visvalingam and JD Whyatt. Line generalisation by repeated elim-
ination of points. Cartographic Journal, The, 30(1):46–51, 1993.

52

A. Test Suite

This appendix describes briefly a test suite of programs and line chart data, which
played a substantial part in the overall project. The test suite provided a platform
for the algorithms to be easily tested with various data sources and compared with
other algorithms.

Figure A.1: Screenshot of the test suite

The backend of the suite was made using the Python programming language1 and all
the downsample algorithms were implemented in Python. To ease development of
the front end of the programs, a high-level web framework for Python called Django2

was used. The library used by the web frontend to visualize the line charts is called
Flot3 and is programmed in JavaScript. I also made some additional plugins for Flot

1http://www.python.org/
2http://www.djangoproject.com/
3http://www.flotcharts.org/

53

http://www.python.org/
http://www.djangoproject.com/
http://www.flotcharts.org/

A. Test Suite

to help analyze the downsampled line charts in more detail. Furthermore, one of
the downsample algorithms was ported to JavaScript4 and implemented as a plugin
for the Flot library (see appendix D).

There were not many detailed requirements regarding the test suite at the beginning
of the project. Initially it was rather rudimentary with limited functionality, but
as work proceeded more features were added. One of those features was the ability
to visualize the line chart and interactively examine it in great detail using a web
interface. Thus, other people could also easily run any of the described downsam-
pling algorithms and view the result. Getting input from people, e.g., DataMarket5
employees and my advisors, played a crucial role in the project.

The ability to easily downsample various data is also important. A given downsam-
ple algorithm might work well for some data but not so well for other. Since this
project is inspired by DataMarket, it is obvious that one of the data sources should
be data hosted by the company. That includes data sources from all over the world
such as the U.S. Geological Survey and Eurostat (see figure A.2). To be able to
search and access a wide variety of data in a well structured form is a huge time
saver. Using the DataMarket API the test suite can fetch any open dataset hosted
by the company and apply any defined downsampling algorithm on it.

(a) World production of
lithium (1925-2010)

(b) Unemployment in the
European Union (2000-2013)

Figure A.2: Data from the U.S. Geological Survey and Eurostat

Another important data source is randomly generated data. An algorithm was de-
veloped to give the user the ability to input certain parameters in order to get a line
chart which had some specific characteristics. Basic parameters of the algorithm in-
clude the number of total points and the axis boundaries (as seen in figure A.3(a)).
More advanced parameters relate to the characteristics of the line chart. For ex-
ample, they allow the independent variables to be non-uniformly spaced, with the
dependent variable fluctuating violently, and also the addition of extreme outliers
(as seen in figure A.3(b)).

4http://en.wikipedia.org/wiki/JavaScript
5More on DataMarket in appendix B

54

http://en.wikipedia.org/wiki/JavaScript

(a) Line chart containing 10,000
data points

(b) Line chart containing extreme
outliers

Figure A.3: Two random generated line charts

The third data source gives the user the ability to define a mathematical formula
and a list of independent variables to input into the formula in order to calculate the
dependent variables (see figure A.4). The formula and list of independent variables
can be defined using a subset of the Python programming language. The formula
data source might not be as useful as the other two, DataMarket and randomly
generated, but it is still interesting to observe how the downsampling algorithms
perform.

Figure A.4: Line chart from formula y = sin(x) and x = [x*0.1 for x in range(400)]

The test suite can also store data from the other sources in its own database. That
is very useful because tests can then be easily replicated with exactly the same
parameters and data. It is by no means guaranteed that the other data sources will
remain unchanged. Some data hosted by DataMarket is updated regularly and the
algorithm to generate random line charts was often revised during the course of the
project.

55

B. DataMarket

DataMarket is a company which was founded in Iceland in June 2008. The company
specializes in hosting data from various sources and making it easily accessible,
independently of the original source format is. With their web interface, data can to
be searched, viewed and compared. The original data providers include corporations,
government agencies and international organisations.1 In fact everybody can upload
and publish their own data free of charge.

As the company grew, so did the data it hosted and it became apparent that some
data could not be easily visualized due to its size. Faced with this problem the
company developed methods to downsample large data for visual representation.
Although these methods were adequate in most cases the company was committed
to find a better solution. It was simply a matter of principle to do so as stated in
their own declaration of principles.2 These principles include respecting the data
and ensuring both excellent performance and user experience.

In 2012 I began looking for a suitable research topic for my master’s theses. I wanted
to involve myself in something which would have some real world applications, so I
contacted DataMarket and asked if they had some interesting topics I could work on.
They proposed I could work on this problem of downsampling data and soon after
I started work. During the course of the project I have had access to DataMarket
employees which has been very helpful in many different ways. Also their love of
data and data visualization is indeed contagious and I will always look at data
differently than before.

1List of largest data providers http://datamarket.com/data/
2http://datamarket.files.wordpress.com/2012/01/datamarket-dop.pdf

57

http://datamarket.com/data/
http://datamarket.files.wordpress.com/2012/01/datamarket-dop.pdf

C. Downsampling Examples

This appendix provides some additional examples of downsampled data by the al-
gorithms described in this thesis (along with the Nth point algorithm).

Data Original count Threshold Page
Icelandic Krona exchange rate 3,987 300 60
Melbourne temperature 3,650 500 61
Random generated line chart 7,000 700 62

Table C.1: List of downsampling examples

59

C. Downsampling Examples

(a) Icelandic Krona exchange rate (3,987 data points)

(b) Same (only smaller) (c) Nth point

(d) Mode-Median-Bucket (e) Min-Std-Error-Bucket

(f) Longest-Line-Bucket (g) Largest-Triangle-One-Bucket

(h) Largest-Triangle-Three-Buckets (i) Largest-Triangle-Dynamic

Figure C.1: The Icelandic Krona exchange rate 3,987 data points down to 300 with
different algorithms

60

(a) Melbourne temperature (3,650 data points)

(b) Same (only smaller) (c) Nth point

(d) Mode-Median-Bucket (e) Min-Std-Error-Bucket

(f) Longest-Line-Bucket (g) Largest-Triangle-One-Bucket

(h) Largest-Triangle-Three-Buckets (i) Largest-Triangle-Dynamic

Figure C.2: The Melbourne temperature (over 10 years) 3,650 data points down to
500 with different algorithms

61

C. Downsampling Examples

(a) Random generated line (7,000 data points)

(b) Same (only smaller) (c) Nth point

(d) Mode-Median-Bucket (e) Min-Std-Error-Bucket

(f) Longest-Line-Bucket (g) Largest-Triangle-One-Bucket

(h) Largest-Triangle-Three-Buckets (i) Largest-Triangle-Dynamic

Figure C.3: Random generated line chart 7,000 data points down to 700 with differ-
ent algorithms

62

D. Downsampling Plugin for Flot

Flot is a free plotting library for the web written in JavaScript (http://www.
flotcharts.org). A number of plugins have already been written by third party
developers extending the possible functionality of the library. I have implemented
the Largest-Triangle-Three-Buckets algorithm (see section 4.2) as a plugin for Flot
and released it under the terms of the MIT Licence (http://opensource.org/
licenses/MIT). The source code is available on github.com (https://github.
com/sveinn-steinarsson/flot-downsample) along with a link to a live demon-
stration. Listed below is the source code of the initial version of the downsampling
plugin.

1 (function ($) {
2 "use␣ strict ";
3

4 var floor = Math.floor,
5 abs = Math.abs;
6

7 function largestTriangleThreeBuckets(data, threshold) {
8

9 var data_length = data.length;
10 if (threshold >= data_length || threshold === 0) {
11 return data; // Nothing to do
12 }
13

14 var sampled = [],
15 sampled_index = 0;
16

17 // Bucket size. Leave room for start and end data points
18 var every = (data_length − 2) / (threshold − 2);
19

20 var a = 0, // Initially a is the first point in the triangle
21 max_area_point,
22 max_area,
23 area,
24 next_a;

63

http://www.flotcharts.org
http://www.flotcharts.org
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
https://github.com/sveinn-steinarsson/flot-downsample
https://github.com/sveinn-steinarsson/flot-downsample

D. Downsampling Plugin for Flot

25

26 sampled[sampled_index++] = data[a]; // Always add the first point
27

28 for (var i = 0; i < threshold − 2; i++) {
29

30 // Calculate point average for next bucket (containing c)
31 var avg_x = 0,
32 avg_y = 0,
33 avg_range_start = floor((i + 1) ∗ every) + 1,
34 avg_range_end = floor((i + 2) ∗ every) + 1;
35 avg_range_end = avg_range_end < data_length ? avg_range_end

: data_length;
36

37 var avg_range_length = avg_range_end − avg_range_start;
38

39 for (; avg_range_start<avg_range_end; avg_range_start++) {
40 avg_x += data[avg_range_start][0] ∗ 1; // ∗ 1 enforces

Number (value may be Date)
41 avg_y += data[avg_range_start][1] ∗ 1;
42 }
43 avg_x /= avg_range_length;
44 avg_y /= avg_range_length;
45

46 // Get the range for this bucket
47 var range_offs = floor((i + 0) ∗ every) + 1,
48 range_to = floor((i + 1) ∗ every) + 1;
49

50 // Point a
51 var point_a_x = data[a][0] ∗ 1,
52 point_a_y = data[a][1] ∗ 1;
53

54 max_area = area = −1;
55

56 for (; range_offs < range_to; range_offs++) {
57 // Calculate triangle area over three buckets
58 area = abs((point_a_x − avg_x) ∗ (data[range_offs][1] −

point_a_y) −
59 (point_a_x − data[range_offs][0]) ∗ (avg_y

− point_a_y)
60) ∗ 0.5;
61 if (area > max_area) {
62 max_area = area;
63 max_area_point = data[range_offs];
64 next_a = range_offs; // Next a is this b

64

65 }
66 }
67

68 sampled[sampled_index++] = max_area_point; // Pick this point
from the bucket

69 a = next_a; // This a is the next a (chosen b)
70 }
71

72 sampled[sampled_index++] = data[data_length − 1]; // Always add
last

73

74 return sampled;
75 }
76

77 function processRawData (plot, series) {
78 series .data = largestTriangleThreeBuckets(series.data, series .

downsample.threshold);
79 }
80

81 var options = {
82 series : {
83 downsample: {
84 threshold: 1000 // 0 disables downsampling for this series .
85 }
86 }
87 };
88

89 function init(plot) {
90 plot .hooks.processRawData.push(processRawData);
91 }
92

93 $.plot .plugins.push({
94 init : init ,
95 options: options,
96 name: "downsample",
97 version : "0.1"
98 });
99

100 })(jQuery);

65

	List of Figures
	List of Tables
	List of Algorithms
	Glossary and List of Abbreviations
	Acknowledgments
	Introduction
	Motivation
	Objectives of the Current Study
	Thesis Overview

	Intuitive Downsampling Algorithms
	Mode-Median-Bucket
	Min-Std-Error-Bucket
	Longest-Line-Bucket

	Cartographic Generalization
	Polyline Simplification Techniques
	Adapting the Visvalingam–Whyatt Algorithm

	Largest Triangle Algorithms
	Largest-Triangle-One-Bucket
	Largest-Triangle-Three-Buckets
	Largest-Triangle-Dynamic

	Survey
	Questions
	Participants
	Survey Results

	Overview Comparison of the Downsampling Algorithms
	Comparison Matrix

	Conclusion, Discussion and Future Work
	Bibliography
	Test Suite
	DataMarket
	Downsampling Examples
	Downsampling Plugin for Flot

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 218.21, 257.12 Width 23.49 Height 8.04 points
 Mask co-ordinates: Horizontal, vertical offset 351.73, 251.55 Width 16.69 Height 9.89 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 218.2081 257.117 23.4898 8.036 351.7293 251.5536 16.6902 9.8904

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 28
 87
 28
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 176.17, 281.22 Width 12.98 Height 6.80 points
 Mask co-ordinates: Horizontal, vertical offset 260.86, 282.46 Width 6.80 Height 5.56 points
 Mask co-ordinates: Horizontal, vertical offset 344.93, 283.08 Width 8.04 Height 4.95 points
 Mask co-ordinates: Horizontal, vertical offset 429.62, 280.61 Width 10.51 Height 6.18 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 176.1737 281.2249 12.9812 6.7997 260.8607 282.4612 6.7997 5.5634 344.9296 283.0794 8.036 4.9452 429.6166 280.6068 10.5086 6.1815

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 29
 87
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 233.66, 516.12 Width 11.74 Height 5.56 points
 Mask co-ordinates: Horizontal, vertical offset 390.67, 516.74 Width 9.27 Height 3.71 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 233.662 516.1232 11.7449 5.5634 390.6729 516.7414 9.2723 3.7089

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 30
 87
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 190.39, 544.56 Width 234.90 Height 5.56 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 190.3913 544.5583 234.8983 5.5634

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 31
 87
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 351.73, 606.37 Width 6.80 Height 4.95 points
 Mask co-ordinates: Horizontal, vertical offset 469.80, 605.14 Width 9.27 Height 4.33 points
 Mask co-ordinates: Horizontal, vertical offset 256.53, 605.76 Width 14.84 Height 5.56 points
 Mask co-ordinates: Horizontal, vertical offset 135.99, 605.76 Width 13.60 Height 6.80 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 351.7293 606.3737 6.7997 4.9452 469.7966 605.1373 9.2723 4.3271 256.5337 605.7555 14.8357 5.5634 135.9937 605.7555 13.5994 6.7997

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 33
 87
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 207.70, 200.25 Width 8.04 Height 3.71 points
 Mask co-ordinates: Horizontal, vertical offset 283.73, 196.54 Width 8.65 Height 6.18 points
 Mask co-ordinates: Horizontal, vertical offset 360.38, 199.01 Width 8.04 Height 4.95 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 207.6995 200.2469 8.036 3.7089 283.7324 196.5379 8.6541 6.1815 360.3834 199.0105 8.036 4.9452

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 40
 87
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 223.77, 323.88 Width 116.21 Height 6.80 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 223.7715 323.8775 116.2128 6.7997

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 43
 87
 43
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 216.97, 409.18 Width 6.18 Height 4.95 points
 Mask co-ordinates: Horizontal, vertical offset 388.82, 407.33 Width 11.13 Height 6.80 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 216.9718 409.1827 6.1815 4.9452 388.8185 407.3282 11.1268 6.7997

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 47
 87
 47
 1

 1

 HistoryList_V1
 qi2base

